skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Banerjee, Dipankar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Full-disk spectroscopic observations of the solar corona are highly desired to forecast solar eruptions and their impact on planets and to uncover the origin of solar wind. In this paper, we introduce a new multislit design (five slits) to obtain extreme-ultraviolet (EUV) spectra simultaneously. The selected spectrometer wavelength range (184–197 Å) contains several bright EUV lines that can be used for spectral diagnostics. The multislit approach offers an unprecedented way to efficiently obtain the global spectral data but the ambiguity from different slits should be resolved. Using a numerical simulation of the global corona, we primarily concentrate on the optimization of the disambiguation process, with the objective of extracting decomposed spectral information of six primary lines. This subsequently facilitates a comprehensive series of plasma diagnostics, including density (Fexii195.12/186.89 Å), Doppler velocity (Fexii193.51 Å), line width (Fexii193.51 Å), and temperature diagnostics (Feviii185.21 Å, Fex184.54 Å, Fexi188.22 Å, and Fexii193.51 Å). We find a good agreement between the forward modeling parameters and the inverted results at the initial eruption stage of a coronal mass ejection, indicating the robustness of the decomposition method and its immense potential for global monitoring of the solar corona. 
    more » « less
  2. Aiming to assess the progress and current challenges on the formidable problem of the prediction of solar energetic events since the COSPAR/ International Living With a Star (ILWS) Roadmap paper of Schrijver et al. (2015) , we attempt an overview of the current status of global research efforts. By solar energetic events we refer to flares, coronal mass ejections (CMEs), and solar energetic particle (SEP) events. The emphasis, therefore, is on the prediction methods of solar flares and eruptions, as well as their associated SEP manifestations. This work complements the COSPAR International Space Weather Action Teams (ISWAT) review paper on the understanding of solar eruptions by Linton et al. (2023) (hereafter, ISWAT review papers are conventionally referred to as ’Cluster’ papers, given the ISWAT structure). Understanding solar flares and eruptions as instabilities occurring above the nominal background of solar activity is a core solar physics problem. We show that effectively predicting them stands on two pillars: physics and statistics. With statistical methods appearing at an increasing pace over the last 40 years, the last two decades have brought the critical realization that data science needs to be involved, as well, as volumes of diverse ground- and space-based data give rise to a Big Data landscape that cannot be handled, let alone processed, with conventional statistics. Dimensionality reduction in immense parameter spaces with the dual aim of both interpreting and forecasting solar energetic events has brought artificial intelligence (AI) methodologies, in variants of machine and deep learning, developed particularly for tackling Big Data problems. With interdisciplinarity firmly present, we outline an envisioned framework on which statistical and AI methodologies should be verified in terms of performance and validated against each other. We emphasize that a homogenized and streamlined method validation is another open challenge. The performance of the plethora of methods is typically far from perfect, with physical reasons to blame, besides practical shortcomings: imperfect data, data gaps and a lack of multiple, and meaningful, vantage points of solar observations. We briefly discuss these issues, too, that shape our desired short- and long-term objectives for an efficient future predictive capability. A central aim of this article is to trigger meaningful, targeted discussions that will compel the community to adopt standards for performance verification and validation, which could be maintained and enriched by institutions such as NASA’s Community Coordinated Modeling Center (CCMC) and the community-driven COSPAR/ISWAT initiative. 
    more » « less
  3. A nano-scaled shuffle-induced modulated structure and heating-induced ordering have been characterized in a metastable β-titanium alloy, Ti-5Al-5Mo-5V-3Cr, and their inter-relationship was investigated through in-situ and ex-situ conventional and aberration-corrected scanning/transmission electron microscopy and atom probe tomography. The nano-scaled O′ phase with a disordered orthorhombic-modulated structure formed by the transverse phonon was characterized for the first time to be stable from room temperature to ∼200°C. The O″ phase with an ordered orthorhombic structure formed from the β phase during aging above the O′ phase solvus temperature, where Al segregation in nano-scaled regions led to ordering of every third {011} planes. 
    more » « less
  4. The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory/(SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there. 
    more » « less
  5. Spicules are rapidly evolving fine-scale jets of magnetized plasma in the solar chromosphere. It remains unclear how these prevalent jets originate from the solar surface and what role they play in heating the solar atmosphere. Using the Goode Solar Telescope at the Big Bear Solar Observatory, we observed spicules emerging within minutes of the appearance of opposite-polarity magnetic flux around dominant-polarity magnetic field concentrations. Data from the Solar Dynamics Observatory showed subsequent heating of the adjacent corona. The dynamic interaction of magnetic fields (likely due to magnetic reconnection) in the partially ionized lower solar atmosphere appears to generate these spicules and heat the upper solar atmosphere. 
    more » « less